python中语句执行效率的测试方法

python scott 110℃ 0评论

python中不同语句执行效率的测试方法是如何来实现的呢?下面的内容将会通过具体的实例来演示python中不同语句执行效率的测试方法的实现方法及相关技巧:

一个功能的实现,可以用多种语句来实现,比如说:while语句、for语句、生成器、列表推导、内置函数等实现,然而他们的效率并不一样。写了一个小程序来测试它们执行的效率。

测试内容:
将一个数字大小为20万的数字,依次取绝对值,放到列表中,测试重复1千次.

测试程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import time,sys  

reps = 1000                #测试重复次数  

nums = 200000              #测试时数字大小  

 

 

def tester(func,*args):    #总体测试函数  

    startTime = time.time()  

    for i in range(reps):  

        func(*args)  

    elapsed = time.time() - startTime #用time模块来测试,结束时间与开始时间差  

    return elapsed  

 

def while_Statement():     #while循环实现  

    res = []  

    x   = 0  

    while nums > x:  

        x += 1  

        res.append(abs(x))  

 

def for_Statement():       #for循环实现  

    res = []  

    for x in range(nums):  

        res.append(abs(x))  

 

def generator_Expression():#生成器实现  

    res = list(abs(x) for x in range(nums))  

 

def list_Comprehension():  #列表解析实现  

    res = [abs(x) for x in range(nums)]  

 

 

def map_Function():        #内置函数map实现  

    res = map(abs, range(nums))  

 

 

print sys.version          #打印系统版本  

tests = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function]  

for testfunc in tests:     #将待测函数放置列表中依次遍历  

    print testfunc.__name__.ljust(20),': ',tester(testfunc)  #

测试结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>>  

2.7.4 (default, Apr  6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)]  

while_Statement      :  84.5769999027  

for_Statement        :  75.2709999084  

generator_Expression :  62.3519999981  

list_Comprehension   :  60.4090001583  

map_Function         :  47.5629999638

改写程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import sys  

nums = 100  

 

def while_Statement():  

    res = []  

    x   = 0  

    while nums > x:  

        x += 1  

        res.append(abs(x))  

 

def for_Statement():  

    res = []  

    for x in range(nums):  

        res.append(abs(x))  

 

def generator_Expression():  

    res = list(abs(x) for x in range(nums))  

 

def list_Comprehension():  

    res = [abs(x) for x in range(nums)]  

 

 

def map_Function():  

    res = map(abs, range(nums))  

 

if __name__=='__main__':  

    import timeit            #用timeit模块来测试  

    print sys.version  

    funcs = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function]  

    for func in funcs:  

        print func.__name__.ljust(20),': ',timeit.timeit("func()", setup="from __main__ import func")

测试结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>>  

2.7.4 (default, Apr  6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)]  

while_Statement      :  37.1800067428  

for_Statement        :  30.3999109329  

generator_Expression :  27.2597866441  

list_Comprehension   :  17.386223449  

map_Function         :  12.7386868963

测试分析:

用time模块,和timeit模块两种测试方式测试了很多组数字,得出的结果是执行内置函数最快,其次就是列表推导,再其次生成器和for循环,while循环最慢。一般最快的使用内置函数的方法要比使用最慢的while快两倍以上。简单分析下原因:内置函数比如说map,filter,reduce(在Python3.0中移除)基本上都是用C语言来实现的,所以速度是最快的,列表推导内的迭代在解释器内是以C语言的速度运行的(一般是for循环的两倍,对大型文件操作而言,用列表推导效果尤其明显),相比较for循环代码是在PVM步进运行要快的多。但for循环里面含range(),相对速度也会快些,while语句是纯粹用Python代码写成,所以速度最慢。所以函数式编程最好使用内置函数,然后才考虑使用列表推导或for循环。最好不用while循环.

python中不同语句执行效率的测试方法就是这样,欢迎大家参考。。。。

转载请注明:osetc.com » python中语句执行效率的测试方法

喜欢 (0)or分享 (0)
发表我的评论
取消评论

表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址